Blog Archives

Tiny Rivers of Life

Stemflow: Tiny Rivers of Life

By Bruce Rottink, Volunteer Nature Guide and Retired Research Forester


[Author’s note: Following a recent Naturalist’s Note on licorice fern, several questions arose concerning which trees licorice fern grows on and why it grows there. This note helps answer those questions.]


If you’re like me, when you think about rain, you think about drops of water falling out of the clouds, hitting your face and streaking those windows you’ve just washed. That’s part of the story, but there’s an important part of rain that’s easy to miss. It’s called “stemflow.”


Stemflow is water that starts out as a falling raindrop, but on the way down it hits a leaf or a twig. Much of this intercepted water starts to move over the surface of the leaf or twig to a branch and then to the stem. At that point it becomes part of a tiny river known as stemflow.


While stemflow is only marginally interesting to humans, both the quantity and quality of the stemflow can mean life or death to epiphytes, the small plants growing on the surface of larger plants like trees. The most obvious epiphytes at Tryon Creek State Natural Area (TCSNA) are moss, lichens and licorice ferns (Polypodium glycyrrhiza).

Licorice fern

Licorice fern


How is stemflow different from ordinary rain?

The chemical properties of stemflow are vastly different from those of free-falling rain. One study of stemflow on bigleaf maple (Acer macrophyllum) found that stemflow had a significantly higher concentration of the plant nutrients calcium, magnesium, sulfur and nitrogen than did raindrops. These chemicals apparently came either from dust that had been deposited on the branches since the last rainfall, or they were leached by the raindrops from the bark itself. In addition, stemflow was less acidic than raindrops.

In a study of stemflow on red alder (Alnus rubra), a nitrogen-fixing species, the stemflow contained 11 times as much life-sustaining nitrogen as raindrops. In contrast to bigleaf maple, the stemflow of alder was more acidic than the raindrops. Numerous studies show that different species of trees produce stemflow with different chemical properties. It seems reasonable that the chemical differences in stemflow between species of trees would influence the amount and kinds of epiphytes growing on those species.


So how much stemflow is there on a tree trunk?

Depending upon the kind of forest, researchers have found that the amount of stemflow is generally between 1% and 5% of the total rain that falls. The amount of stemflow on a tree of a given crown size varies depending upon how the branches are attached to the trunk, and how rough the bark is.


How do tree branches effect stemflow?

Tree branches can be attached to the main trunk of a tree at many different angles. If the branches point strongly upwards (as in the red alder pictured below) any rain hitting a branch will probably run right down to the main stem. However, if the branches are attached to the trunk horizontally, like they are in the western redcedar (Thuja plicata) pictured below, if a raindrop hits the branch, it probably won’t flow to the main stem and become stemflow.


Red Alder with upward pointing branches


Western redcedar with horizontal branches













Another factor which apparently hasn’t drawn the attention of researchers, is whether or not the foliage is droopy. Two of TCSNA’s conifers have extremely droopy small twigs and foliage. You can see that in the western redcedar pictured above. Droopy foliage is also characteristic of western hemlock (Tsuga heterophylla). As you can see in the picture below, with droopy foliage, intercepted water runs off the branch tips, and never becomes stemflow.


Water droplets falling off of hemlock shoot tips


How does bark effect stemflow?

Researchers have discovered that trees with rough bark have less stemflow than trees with smooth bark. Having rough bark increases the surface area of the tree trunk. In the diagram below, the cross sections of two hypothetical trees are superimposed, each represented by a different color. While conventional measurements would say both of these trees are of equal diameter, clearly the orange tree, with the rougher bark, has a larger surface area.



Research suggests two factors are involved here. The first factor is that before stemflow can start, all of the bark surface area will need to be wet. Trees with rougher bark need more water to get all the bark wet, so stemflow, especially with a light rain, is less. The second factor is that bark itself absorbs some water, and with a larger surface area, more water can be absorbed by the bark, resulting in less stemflow. Less stemflow means fewer epiphytes.


Rough bark on Douglas-fir


Smooth bark on red alder












I recently measured the “roughness” of the bark on the Douglas-fir pictured above. The roughness made the actual surface area of the trunk 10% greater than if the bark had been smooth.


One accepted method of determining bark roughness is to wrap a string around the tree, and measure how long the string is to determine the circumference. Then a wire is wrapped around the tree at the same height, but as the wire is wrapped around the tree, it is pushed into all the cracks and crevices on the tree. It stays “pushed in” and afterwards the length of wire needed to encircle the tree is measured. The ratio of the additional length of the wire divided by the length of the string is a measure of bark roughness. The process is illustrated below.


Wire and twine wrapped around tree trunk


Wire removed from tree, showing where it was pressed into                                                                                                                               a bark crevice

Wire removed from tree, showing where it was pressed into a bark crevice


Okay, so where does licorice fern grow?

Some believe that bigleaf maple is the only significant host of licorice fern at TCSNA, while red alder will occasionally host a few fronds. To address those beliefs, I turned to the last resort of those truly desperate humans we call “scientists,” actual (No, no, don’t say it!) data!


First, looking around TCSNA I managed to find licorice fern growing as epiphytes on living plants of the following species: bigleaf maple (of course), red alder, Pacific yew (Taxus brevifolia), Oregon ash (Fraxinum oregona), Douglas-fir (Pseudotsuga menziesii), black cottonwood (Populus balsamifera spp. trichocarpa) and vine maple (Acer circinatum).


Licorice fern on Pacific Yew


Licorice fern on Vine Maple

Licorice fern on Vine Maple

Next, to clarify the relationship between red alder and licorice fern, I grabbed a stick about 6 feet long, and walked along Center Trail/Big Fir Trail/Middle Creek Trail as far as Beaver Bridge. Any living alders along that path that I could touch with the stick while standing on the path became a part of my sample. Of the 36 alders in my sample, licorice fern grew on 35 of them (97+ %).


Finally, to address the issue of alders supporting only a few fronds of licorice fern, I stopped at three alders with “lots” of ferns and while standing still on one side of the tree, counted visible fronds. On one tree I stopped counting at 50, the next at 75 and at the third tree I stopped counting at 150 individual fronds. Thus it appears that licorice fern and alder can get along quite well. To be fair, there were a few good-sized alders which supported only 2 or 3 fronds high up in the tree.


Licorice fern on red alder



Your mission, should you decide to accept it….

Search for licorice fern in unusual places. Will you be the first person at TCSNA to find it on western redcedar? Can you find it growing on a rock? Or maybe you can find it someplace totally unexpected like on an old signpost along a trail. Keep your eyes open, and if you find some licorice fern in a different kind of place, post a comment below. We’ll all be smarter. As someone once said, “Our current state of knowledge only represents the point at which we’ve decided to stop asking questions.”






An Ever Changing Forest…

Tryon Creek’s Ever Changing Forest

By Bruce Rottink, Volunteer Nature Guide and Retired Research Forester


From year to year, the array of plants in the forest at Tryon Creek State Natural Area (SNA) seems to change very little. But this apparent stability is an artifact of the human timescale we use to assess the changes in the forest. On a timescale encompassing centuries, the array of plants at Tryon Creek SNA is undergoing constant change.

Three of the main reasons why a forest’s composition changes are:

  • a) replacement of the native plants by non-native species;

  • b) devastating disasters, like volcanic eruptions, or massive landslides;

  • c) normal forest succession.

While the issue of non-native plants is very important, for this note I will focus solely on normal “forest succession.”

What is Forest Succession, anyway?

“Forest succession” is the process by which certain species of plants gradually replace other species of plants. When a landscape is new and barren, such as after a landslide or volcanic eruption, certain plants start to grow in these areas. These are called pioneering plants. These pioneers are adapted to these highly disturbed conditions, and have a huge advantage over non-pioneering plants. However, these pioneering plants slowly and unwittingly change the environment in a way that gradually gives other species an advantage over the pioneers.

How do plants change the environment?

One of the most important ways that these pioneering plants, especially trees, change the environment is by generating lots of shade. The pioneers love full sun, but their very existence reduces the amount of sun that reaches the ground where young plants start. Thus the pioneering plants may only dominate the landscape for a generation or two of plants. Plants that play a part in the forest for only a short while are called “seral” species. [Think of “seral” as being one part of a “series”, as in things that follow one after another.]

At Tryon Creek SNA, and many other parts of western Oregon, the first trees to typically occupy disturbed landscapes are either red alder (Alnus rubra) or Douglas-fir (Pseudotsuga menziesii), depending upon local factors, for example, soil moisture and the proximity of a seed source. Both of these species do best with full sunlight. In forestry terms, they are called “shade intolerant,” or simply “intolerant.” One result of their need for sunlight is that the leaves on the lower branches of the mature trees die off due to lack of sunlight, and for these species it’s a long way up to the first living branch, as seen in the photos below.


This Douglas-fir has no lower branches


Red alder in the creek bottom. It’s a long way up to the first branch!

To demonstrate this intolerance I took a picture of myself standing among some young Douglas-firs at Tryon Creek SNA, click on the tree to see the results.


Me standing amidst a patch of Tryon Creek’s young Douglas-firs

Can’t see the young Douglas-firs? That’s because there aren’t any at Tryon Creek SNA (with the exception of a few that were planted by humans, most of which died quickly, according to long-time volunteer Phil Hamilton). The young Douglas-fir cannot thrive, and rarely survive long, under the shade of older trees. If you let your mind wander ahead about 500 years, roughly the lifespan of a Douglas-fir, you can probably see where this is going.

So what happens when the pioneers die?

Enter the western redcedar (Thuja plicata) and the western hemlock (Tsuga heterophylla). In contrast to Douglas-fir, both of these species can easily grow in considerable shade, even in the shade of their own parents (there’s a big hint). These species are called “shade tolerant” or simply “tolerant”. There is no better portent of the future than the picture below; a young western redcedar growing at the base of an old Douglas-fir along the Red Fox Trail.


Young western redcedar waiting to inherit this spot from an old Douglas-fir

Similarly, there are the many young western hemlocks growing happily under the towering Douglas-fir, like the one below along the Old Main Trail. As you see, because the hemlock is tolerant of shade, unlike the Douglas-fir, it has branches that reach nearly to the ground.


Young, shade tolerant hemlock growing under old Douglas-fir

Eventually, barring any major disturbance, the forest at Tryon Creek SNA will forever be dominated by western redcedar and hemlock. The trees of this “forever” forest are called “climax species.”

I recently did a quick count of young conifers less than about 4” in diameter growing within approximately 10 feet of the Old Main Trail between the Nature Center and the junction with the Red Fox Trail. The tally? western redcedar – 17; western hemlock – 6; Douglas-fir – 0; The best that anyone can recall, only a couple of the western redcedar in this stretch of trail were planted by humans.

Do the trees change anything else in the environment?

Producing more shade is the main way that trees drive the succession process, but there are a few other factors at work as well. For example, the Naturalist Note of August 18, 2014 highlighted the important role of red alder in converting the unusable nitrogen in the air, into a form of nitrogen the plants can actually use. This process is called nitrogen fixation. Because the alder can do this, they have a competitive advantage over other species on those disturbed landscapes with low nitrogen. But as the nitrogen-rich alder leaves fall to the ground and decay, their nitrogen is added to the soil. With more nitrogen in the soil, the alders make the site better for non-nitrogen fixing species, and hence lose their competitive advantage.

Another minor factor in forest succession is when some of the pioneer trees die and fall to the ground. The fallen logs, after they have a chance to decay a bit, are the perfect spot for young hemlock and western redcedar to start growing. These logs are called “nurse logs.” Rotten wood acts like a sponge, and soaks up lots of water that the young trees then use. Additionally, the competition on the forest floor can be intense. At Tryon Creek SNA, the Pacific waterleaf (Hydrophyllum tenuipes), for example, can grow in dense beds over a foot tall, and provide stiff competition for a young conifer seedling less than 2 inches tall. By growing on top of the log, the young conifer seedlings can escape a lot of that competition. Below is a prime example of a western hemlock that got started on a nurse log. The log rotted completely, leaving the roots (see red arrow) above ground level.


Western hemlock which started on a now-rotted away nurse log.


Roots that started in the nurse log are now above ground

These nurse logs can help change the forest in a subtle way. There are many examples at Tryon Creek SNA of western hemlock and western redcedar that got started on nurse logs or nurse stumps. However, I’ve never seen a Douglas-fir, either at Tryon Creek, or during my 10 years as a professional forester in this corner of Oregon, which got started on a nurse log/stump. Thus, as the pioneering species die, their remains provide great places for the climax species, and only the climax species, to get started.

Challenge: Can you find this western redcedar along the trail at Tryon Creek SNA?

(*Hint: it’s in the southern end of the park, south of the Red Fox Bridge; get your trail map here)

photo 1

Western redcedar that got its start on an old nurse stump.

Exploring the trails of this forest you’ll find signs of what it once was, but now can you imagine what the future will bring?

Today we enjoy the big Douglas-fir/alder forest at Tryon Creek SNA. Thanks to the Oregon Department of Parks and Recreation, and the Friends of Tryon Creek, your great-great-great-great-great…. (okay, you get the idea) … grandchildren will be able to enjoy the amazing hemlock and redcedar forest that they will know as Tryon Creek State Natural Area.

Then and Now

Then and Now: The Forest at Tryon Creek

By Bruce Rottink, Volunteer Nature Guide and Retired Research Forester


Prior to the creation of Tryon Creek State Natural Area (SNA) around 1970, no group had as much impact on the forest as the loggers. The forest we see today at Tryon Creek State Natural Area (SNA) is much different from what the first loggers found, which they referred to as the “old growth” forest.

What was Tryon Creek like back then?

In contrast to today’s tranquil forest, in the era of the loggers, Tryon Creek was bustling with industrial activity. Starting in 1874 the forest was logged to produce charcoal to fuel the nearby iron furnace, parts of which are still visible in George Rogers Park. According to historical accounts, the loggers focused on cutting the 6-foot diameter Douglas-fir (Pseudotsuga menziiesii) because Douglas-fir made the best charcoal. One of the most important modes of transportation in the park at that time was the charcoal wagons pictured below.


“Charcoal Wagons” hauling fuel to the iron furnace in Oswego  –photo courtesy of Lake Oswego Public Library

After the iron furnace closed for good about 1894, logging activity subsided. The second big logging push was from 1912 to 1915 when the Boones Ferry Wood and Tie Company logged in the park. Since much of the Douglas-fir had been taken for charcoal, the focus shifted to the western redcedar (Thuja plicata) and western hemlock (Tsuga heterophylla). The cedar was used for railroad ties, and the hemlocks were cut for poles.

Some lesser levels of logging around Tryon Creek continued until about 1961.

Are there any remnants of the logging era?

The most obvious remnants of logging are the large stumps scattered throughout the forest. One example is this stump on the Big Fir Trail. From ground level to the top where it was cut off it measures 10’ 4” high. The blackened notch (more about that later) you see in the side of the stump in the center of the picture is 7’ 6” above the ground. A stump just downstream from Obie’s bridge beats it with a height of 11’ 11” from ground to top, but it’s not as photogenic!

Old stump on Big Fir trail

Old stump on Big Fir trail


Why are many of the stumps so tall? One answer is “resin.”

There are several answers to the question as to why the stumps are so tall. The loggers discovered that oftentimes, the butt of the tree was a place that contained abnormally high quantities of resin. And the resin is sticky! As the loggers cut the tree, the resin would build up on the saw blade, and make it really hard to pull the saw through the wood. For small amounts of resin, the loggers had a solution – kerosene. Kerosene is a liquid somewhat similar to gasoline. To the loggers, its virtue was that it dissolved the resin on the saw blade, and made the sawyer’s job a lot easier. Referred to as “saw oil”, each sawyer kept some nearby in a saw oil bottle, an example of which is seen below.


Saw Oil Bottle stuck in the side of a Douglas-fir

Every saw oil bottle I’ve ever seen looks homemade. No two are alike. The glass part of the bottle pictured here was manufactured in England in the early 1900s. It was used by a logger in the Tillamook area in the 1930s. There is a notch in the side of the cork, so a sawyer could sprinkle the kerosene on the saw blade. An old logger told me that a good sawyer could saw and sprinkle at the same time. Wow!

Sometimes steep hills called for tall stumps!

Yet another reason some stumps are so tall is because they are growing on a slope, like the stump on the Big Fir Trail in the photo below. I’ve added a red line at the ground level on both the uphill and downhill sides of the stump. The yellow pole to the left is my measuring stick, and the white object on the right is my clipboard which is sitting on the ground. The cutting technology of the day, a two-man crosscut saw, required someone to be on each side of the tree. On the downhill side, this stump is 10’ 7” tall, and the uphill side is 6’ 6” tall.


Old growth stump on a slope

Old growth stump on a slope

What is “butt swell,” and how did it lead to tall stumps?

Yet another reason some of the stumps are so tall is because of what is in delicately referred to as “butt swell.” Butt swell is the tendency of trees, especially larger ones, to be bigger around near the ground-line than they were further up the trunk. This is dramatically illustrated by the old western redcedar stump on the West Horse Loop Trail pictured below. At the height the loggers made the cut, the current diameter is 5’ 2”, although some of the wood has doubtless weathered away since it was cut. The vertical red lines mark the width of the tree at the level where the loggers actually cut it off.


Butt swell on old western redcedar stump

If the loggers had cut the tree off at the level of the horizontal blue line, closer to the ground, the cross-sectional area of the stump would have been 2.9 times greater than the cross-sectional area of the cut they actually made. This means the loggers would have had to do almost 3 times as much work to make the lower cut. (Homework: Print this picture, measure and calculate yourself. Remember: Area = 3.1416 x radius2.) Also, given the technology used in sawing lumber, all the wood outside of the red lines would have been wasted anyway. The obvious way to handle this need to cut the trees high above the ground was to hire really, really tall loggers!


Really Tall Loggers? C’mon, get real!

Okay, so the really tall logger thing didn’t work out; instead they simultaneously invented two things – the springboard and the springboard notch. The springboard was primarily just a wood plank, and the springboard notch was how you fastened the springboard in place. Putting the springboard in the notch created a small sturdy platform you could stand on whilst cutting the tree.

First, the springboard. It had a steel plate on one end with a sharp upward pointing cleat that could bite into the tree to hold the board in place. The underside of the “toe” of the board was tapered to ease the insertion of the springboard. Pictured below is a vintage springboard that has been restored with a new plank made of old growth Douglas-fir.



Details of the springboard’s “toe”

Details of the springboard’s “toe”










Springboards in Action

Here you’ll find what I like to call a “double-decker” springboard. This image is provided by the Oregon Historical Society, Photo # 6017.


Double-decker springboard

Below, is a side view of a springboard notch. The essential features of the notch are a horizontal bottom to support the springboard, and a steeply angled top to allow for insertion of the springboard. The loss of the bark and weathering of the outer part of the tree makes the notch look shallower than it originally was.


Side view of springboard notch on Middle Creek Trail

Side view of springboard notch on Middle Creek Trail

Today’s much smaller trees have less butt swell and resin. The advent of the chainsaw made the actual sawing LOTS easier, while ensuring that you only needed a sawyer on one side of the tree. All of these factors led to the demise of the springboard.


Man-made logging relics too!

During logging’s hay-day at Tryon Creek, a saw mill was established in the Tryon Creek canyon in the vicinity of present day Beaver Bridge. To bring the logs to the mill, a steam donkey was located near the creek. A steam donkey, like the example in the photo below, was a vertically oriented steam engine that powered spools of cable to drag the logs out of the woods. The steam donkey below was mounted on the two large logs which functioned as skids so the donkey’s cables could be fastened to trees, and the donkey could pull itself through the woods. When it was pulling in logs, the donkey would be cabled to large trees to stabilize it.


Steam donkey used in old-time logging operations –photo courtesy of Camp 18 Restaurant, Elsie, OR

As you might imagine, when pulling multi-ton logs through a forest, across stumps, and through brush, every now and then a cable would snap. A remnant of the cable used during Tryon Creek’s logging days can be seen as you stand on Obie’s Bridge and look upstream. On the right side of the creek you can see (depending on the water level and amount of debris) part of a steel cable that was used to pull logs out of the woods.


Cable from the old logging days.

Cable from the old logging days.


Tryon Creek’s Forest – Take 2!

Thankfully, the forest ecosystem is resilient, and following the loggers, the vibrant young forest that we see today regrew at Tryon Creek SNA.







Drawn In

Art • Nature • Exploration

The NAI Blog

From the National Association for Interpretation

Father/kids finding nature w/in the city

NAI Region 10

NAI R10 is a nonprofit professional organization serving NAI members in Alaska, Yukon, Alberta, British Columbia, Idaho, Washington and Oregon. Our mission is to inspire leadership and excellence to advance heritage interpretation as a profession.

Volunteer Voice

Oregon Parks and Recreation Department

Columbia River GORGEOUS

Ranger's blog for state parks in the Columbia River Gorge