Blog Archives

English Ivy: Forest Invader

By Bruce Rottink, Volunteer Nature Guide & Retired Research Forester

 Photo 1

This Naturalist Note is dedicated to Phil Hamilton who passed away on June 12.  Phil devoted more than 24,000 volunteer hours helping make Tryon Creek State Natural Area the wonderful place it is today.  He played many leadership and resource roles, but is perhaps best known as the ‘King of the Ivy Pullers.’  He not only pulled a lot of ivy himself, but led hundreds of groups of ivy pullers out into the park.  Every time I went out with him, he told me something brand new about the forest that I did not know before.  He was a great role model, and helped many people get started on the track of volunteering at Tryon Creek.  I, and I’m sure many others, will remember this dedicated, knowledgeable and hard-working man forever.  Thank you Phil!

 

 

If there was a vote on the most despised plant at Tryon Creek State Natural Area (TCSNA), ivy would win hands down.  This aggressive, invasive plant outcompetes and displaces many native plants.  In an area near the Red Fox Trail where the ivy completely covered the forest floor, I removed and measured the ivy in a three-foot by three-foot plot.  In that plot there were 285.8 linear feet of the ivy vine.  (Yes, it was really thick, in multiple layers!)  If (and thankfully, it doesn’t) this density of ivy covered all of TCSNA there would be enough ivy to wrap around the earth at the equator more than 6 times!

Photo 2

Ivy harvested from a 3 ft. x 3 ft. area of forest floor.

 

 

Ivy’s habit of climbing up tree trunks makes it difficult to ignore.  Not surprisingly, ivy has many special features that make it so successful.

Photo 3

Ivy growing up a tree trunk near the Red Fox Trail.

 

 

Ivy:  The ingenious climber

Ivy needs sunlight to grow.  How does a plant get close to the sun?  Most trees, like our Douglas-fir (Pseudotsuga menziesii) develop a thick trunk that lifts their leaves up toward the sun.  Building the thick stem takes a lot of resources.  A study in western Washington showed that for 47-year-old Douglas-fir, 87% of the above ground biomass was in the trunk of the tree.  The major purpose of the tree trunk is to get the needles up into the sunlight where they can photosynthesize.  The ivy developed the habit of just climbing the tree trunks that were already there.  It saved itself all the energy required to develop a self-supporting stem.

 

I pulled down an ivy vine that was growing up the side of a tree.  The diameter of the ivy’s stem at ground level was 3/4 of an inch.  Twenty-one feet up the tree, it was not much smaller, as you can see below:

Photo 4

Cross section of a single ivy stem at ground level (left) and twenty-one feet high (right).

 

Since ivy doesn’t need a thick stem to hold itself erect, it uses its energy to grow taller.

In contrast, a western redcedar (Thuja plicata) only 10 feet tall growing along Old Main Trail had a basal diameter of 1.59 inches.  The redcedar needs this thick stem to hold itself up, while the ivy doesn’t.

Photo 5

Stem diameter a base of 21+ foot tall ivy and 10 foot tall western redceadar.

 

 

Not that ivy vines don’t grow large, especially when two or more vines merge together.

Photo 6

Cross section of a large ivy vine with red arrows marking the pith (“center”) of the three original vines.

 

Ivy only had to develop a method of holding onto the tree.  Voilà!  The aerial rootlet, which adheres to the tree’s bark:

Photo 7

Ivy stem (blue arrow) with aerial rootlets (red arrows) clasping the tree bark.

 

Using these aerial rootlets, the ivy manages to climb up the trunk of trees into the light without having to expend the energy to develop a big, supportive stem.

 

Creating a Home for Others

While we rarely envision ivy as a benevolent plant, other organisms may have a different view.  As you can see in the photo below, sometimes the mass of ivy stems creeping up a tree is part of a community complex most frequently involving moss or licorice fern (Polypodium glycyrrhiza).  While removing ivy from a tree near the Red Fox Trail, I collected the sample (in cross section) shown below.  It is a combination of primarily ivy and licorice fern, with a hint of moss.

Photo 8

Mat of ivy stems and roots mixed with licorice fern stems (red arrows) and roots from trunk of red alder.

 

The mass of roots, stems and miscellaneous dirt measured about 7 cm (~2-1/2 inches) thick.

 

How much water might this hold?  I cut a 2-1/2” by 3-1/4” sample from the tree.  I soaked it overnight in water.  I weighed the wet sample and then let it air dry completely and weighed it again.  I calculated that a square foot of this material would hold slightly more than 2-1/4 quarts of water.  This is a mixed blessing.  While some of this is a nice reservoir of water for the licorice fern growing in this mass, it is also a significant weight burden for the tree.

 

To find out how much water might be stored in the mass of ivy roots and licorice fern, I did some calculations.  I measured the diameter of the trunk of a large fallen alder tree near the Middle Creek Trail at 10 foot intervals, up to 63 feet above ground, where it started branching out.   Based on this data, I calculated the surface area of the tree trunk.  If the entire surface of this tree trunk were covered like the sample above, the ivy/moss/licorice fern could potentially contain up to 1,520 lbs. of water.  That’s three-quarters of a ton of water.  Yikes!

 

Ivy:  It’s Tough

Every species of plant contains nutritious chemicals like sugar, cellulose and dozens of others.  This naturally attracts other species that don’t have the ability to capture solar energy to sustain themselves.  One of the keys to a plant’s survival is to protect itself from these organisms, which range from molds and insects, all the way to humans.  In the picture below, you can see the surviving remnants of leaves on one of TCSNA’s common shrubs.

Photo 9

Damaged leaves on dull Oregon grape (Mahonia nervosa)

 

To find out how effective ivy is in protecting itself, I conducted a survey in the fall of 2016.  I examined the leaves of three species of plants, and counted the number of leaves (or leaflets) that were damaged.  To minimize the possible effects of humans, I examined sites more than 10 feet from a trail.  (Confession: I don’t actually know what caused the damage; it might have been insects, diseases, a hailstorm or whatever.)  For each species, I examined leaves in two different places (for example, near Red Fox Trail and near Old Main Trail), to get an “average” value.

The results are presented below:

                                 Number of                  Total leaves           Percent of

Species                damaged leaves               examined           leaves damaged

Red Alder                   181                                  199                          90.0%

Oregon grape            375                                  559                          67.1%

Ivy                                  93                                  279                          33.3%

 

Ivy has less leaf damage, whatever the cause, than either the red alder or the Oregon grape.  Good for the ivy!

 

Ivy is a Persistent Grower

Every plant has a growing season, and for ivy, it’s long.  To determine how long into the fall/winter this plant might grow, I measured the growth of an individual ivy stem along the Red Fox Trail.  The data shows that ivy continues growing quite late in the year.

Photo 10

In contrast to the ivy, on September 28, one of the Indian plum (Oemleria cerasiformis) plants I was monitoring in that area was completely bare of leaves, while the other Indian plum in that area had dropped about 98% of its leaves.

 

Ivy’s Secret Strategy

One of ivy’s secret strategies is that virtually every place along the stem where there is a leaf, there is the potential to grow roots.  That is seen in the photo below:

Photo 11

Ivy roots developed at every node on this stem.

 

Should the stem of this ivy plant be broken, no sweat!  Every part of the stem has its own root system and can stay alive.  This is in contrast to most woody plants which only produce roots at a single point in the plant.

 

English Ivy really isn’t that bad (a tidbit for geeks!)

It turns out that much, if not most, of the ivy that we have at the park really isn’t English ivy (Hedera helix); it’s Irish ivy (Hedera hibernica).  Not that the other plants care!

 

The key reliable morphological feature that discriminates between the two species are the miniature hairs that grow in clusters on the plant.  The Irish ivy hairs are in small clusters lying flat on the plant’s surface, while English ivy hairs are in larger clusters and stand erect.  The microphotographs below of plants collected at TCSNA shows the difference.

Photo 12

Left: Flat “hairs” on Irish ivy; Right: Erect “hair” clusters on English ivy.

 

To further complicate things, hybrids of English and Irish ivy have been discovered and….  Okay, I’ll quit now!

 

The Ivies:  Green Success Stories

The ivies in the genus Hedera are very successful plants.  They can grow tall without having to use their own stem to support themselves.  When hacked into pieces, many of the pieces are able to stay alive and become a whole new plant.  They also appear more resistant to disease and predation than many of TCSNA’s other plants.  They have a longer growing season than many of our native plants.  All of this spells success for the plant, and lots of work for our ivy pullers who are trying to encourage the growth of native plants by reducing the resource competition from the ivy!

Advertisements

Native American Uses of the Forest

By Bruce Rottink, Volunteer Nature Guide and Retired Research Forester

 

For thousands of years before settlers from the eastern United States or Europe arrived in the vicinity of what is now Tryon Creek State Natural Area (TCSNA), Native Americans called this forest home. The Native Americans used resources ranging from rocks to trees to animals. However, the basis for much of the Native American life was the plant life of this area. They relied on the forest and waterways for everything; food, medicine, tools, clothes, everything!

What kinds of plants did they eat?

There were lots of plants and fruits the Native Americans ate. Some of the more tasty items were the berries from the forest, like the salal (Gaultheria shallon) berries. Pictured below are the plant and berries. I’ve planted salal in my front yard, and they are delicious on my morning cereal!

1

Salal plant, with salal berries in the inset at lower left

 

Another food the Native Americans sometimes ate were the berries of the Oregon grape (Mahonia nervosa). In the photo below, the blue-colored berries are almost ready to eat, while the greenish ones have a way to go before they are ripe.

2

Oregon grape berries starting to ripen

 

I’ve tasted Oregon grape berries too. My taste buds’ response was, o-o-o-o-kay! I think they’re about half way between yummy and yucky. According to ethnobotanists, people who study how different groups of people use plants, the Native Americans would sometimes mash the fruits of the salal and Oregon grape together. In this way, they had a greater total quantity of food, which still tasted “kind of” good.

 

Another category of food plants is represented by the skunk cabbage (Lysichitum americanus) pictured below. This plant has a large underground tuber (note: potatoes are also tubers). Unfortunately, the skunk cabbage tuber tastes awful. It had to be specially prepared to become even edible. Ethnobotanists refer to this as a “starvation food” meaning that you only ate it when the alternative was starvation. If you’ve ever smelled a skunk cabbage in the spring, you understand why it wouldn’t necessarily pop into your mind as a good food item!

4

Skunk cabbage plant and flower

What kind of medicine is in the forest?

For the Native Americans, the forest was their drugstore. Just one of the many medicinal plants used by some Native Americans was the licorice fern (Polypodium glycyrrhiza). The pictures below show the licorice fern growing on the side of a tree at TCSNA and the second photo shows a cleaned-up licorice fern plant that was growing on a branch that was blown down during a windstorm. The rhizome can be thought of as a perennial stem, while the leaves come and go with the seasons.

5

Licorice fern growing on a tree trunk

 

6

Licorice fern after removing the surrounding moss

 

The Native Americans cleaned up the rhizome of the licorice fern and chewed it as a cough and sore throat remedy. Once when I was not at TCSNA, I cleaned up a licorice fern rhizome and chewed it a bit. It does taste faintly like licorice. Within 30 seconds of starting to chew the rhizome, I got a tingle right in the back of my throat. Although I was perfectly healthy at the time, the fern was definitely affecting me. It would have been interesting to see the effect if I’d had a cold or sore throat.

 

What kind of tools did they find in the forest?

One of the tools the Native Americans found in the forest was the horsetail (Equisetum spp.), pictured below. This primitive plant contains a lot of silica crystals. Silica is the most common material found in sand. The Native Americans used this as a “natural sandpaper” for finishing their wooden tools. The effectiveness of this tool can be demonstrated by using it to polish a penny.

7

Equisetum and polishing a penny with Equisetum

 

The effectiveness of polishing is shown in the “before and after” photos below.

8

Two unpolished pennies (left)        Far right polished for 2 min. with Equisetum.

 

What kind of clothes did they make from forest plants?

The western redcedar tree (Thuja plicata) had many uses. To give just one example, its bark is very fibrous. With careful harvesting and care it can be used to produce everything from rope to clothes. Pictured below is a cedar bark rain hat. These were widely made and used by the Native Americans on the Pacific coast. According to some sources, they would sometimes treat this hat with pitch to make it even more water repellent.

 

9

Native American cedar bark rain hat

 

But of all the clothing that the Native Americans made from forest plants, the one that always intrigued me was that they used moss for baby diapers. I wondered how well those would work. Strictly as a public service, I decided to run an experiment and find out.

You personally tested moss as diapers? Seriously?

Before your imagination runs wild (it may already be too late), let me explain. I took samples of five water-absorbing things:

  • A major brand of modern disposable diaper
  • A sponge
  • A pile of moss
  • A traditional cloth diaper
  • A bunch of paper towels

 

I weighed each item dry, making sure I had between 60 grams and 90 grams of each material (this is about 2 to 3 ounces). I then soaked each item (separately) in water completely covering the test material with water for 15 minutes. Then I put each material on a sheet of screen to drain. When the drops of water falling out of the material were 10 or more seconds apart, I considered the material to be completely drained. I then weighed each item wet. I calculated “absorbency” by dividing the weight of water absorbed by the dry weight of the material.

 

The results are displayed in the chart below.

10

 

Modern diapers with their SAP (Super Absorbent Polymer) ingredient can absorb more than 80 times their weight in liquid! But let’s cut to the chase. I was fascinated to see that moss, the key ingredient in the Native American diaper could absorb 7.4 times its dry weight in water. In contrast, a classic 100% cotton, all-cloth diaper can only absorb 3.5 times its own dry weight in water. So the Native Americans were using the superior diapering material! Wow!

 

At home in the forest!

To the Native Americans, the forest was their home, their grocery store, their pharmacy, their hardware store, their everything! They adapted to their environment to meet all their needs.

 

Fighting Flora

The Plants Fight Back!

By Bruce Rottink, Volunteer Nature Guide and Retired Research Forester

 

Plants may seem like passive members of the Tryon Creek State Natural Area (TCSNA) forest community. They stand in one place for many years, stoically enduring every insult the ecosystem throws at them. Their reactions are neither flashy like birds, nor noisy like squirrels. Their efforts at survival are more subtle, yet often very effective.

Plants are subject to a wide range of diseases, primarily caused by fungi or bacteria. Unlike many animals, plants don’t have an immune system to fight off infections. Still, over many generations, plants have developed some defensive tricks that might not be obvious to humans.

 

Okay, how do plants cope with infections?

One method of dealing with disease is to just give up and start over again! For example, by early August of 2013, all the leaves of one particular vine maple (Acer circinatum) near Obie’s Bridge were heavily infected and damaged by a microorganism. The photo below shows the extent of damage to typical leaves.

1

Heavily infected leaves on a vine maple

 

Damaged as the leaves were, the plant reacted by dropping all of the diseased leaves in early August, and growing a new set of uninfected leaves. The uninfected leaves served it well through the remainder of the growing season. The new leaves are shown in the photo below. You’ll note in the photo that the leaves on the lower portion of this branch have not yet grown out, and may not grow out this year.

2


Second set of leaves in a single year

Wow, that seems like overkill!

Yes, this is a radical approach to dealing with leaf diseases, but when all other defenses fail, the plant has little choice. More often, plants deal with leaf infections by a process known as “compartmentalization.” This is illustrated in the photo of the Oregon grape (Mahonia sp.) leaf below. This leaf has been attacked by a fungus. The fungal attack has killed the leaf tissue, as indicated by the pale circular (and now fractured) area of leaf tissue. In response to the infection, the leaf has created a barrier, seen as a thin black line, to stop the infection from spreading. The black spots within this area are places where the fungus has produced spores.

3

Fungal infection on Oregon grape leaf

Actually, the leaf has responded to the fungal attack in two ways. First, it has created a physical/chemical barrier to the fungus, which is the black ring surrounding the infected spot. This will stop the fungus from spreading any further into the leaf. Secondly, the reddish areas of the leaf are colored by the natural chemical called anthocyanin. Scientists have discovered two very cool things about anthocyanin. First, scientists have shown that anthocyanin interferes with the growth of fungus. Second, scientists have discovered that many plants start producing anthocyanin when they sense a fungal infection. So the production of anthocyanin is the plant’s form of chemical warfare, triggered by the presence of fungus.

In the interests of full disclosure, the anthocyanin may “appear” for one of two reasons. First, it may have been there all along, and only becomes visible when the normal green pigment (chlorophyll) disappears. Or secondly, it may have been synthesized by the plant in response to the attack. While it is not definitive proof, the photo below of a leaf attacked by fungus shows the (red) anthocyanin only near the region of fungal attack. This in spite of the fact that the chlorophyll has disappeared from the leaf. This suggests to me that the leaf was not filled with anthocyanin that was revealed when the chlorophyll disappeared, but rather the anthocyanin was specifically synthesized in response to the fungal attack.

4

Senescing leaf of Oregon grape

 

What happens when decay gets into a tree’s trunk?

When a tree is dealing with a fungal attack on its main stem, or trunk, just giving up is NOT an option. Once wood has started to decay, it doesn’t “heal.” And plants, as far as we know, don’t have immune systems. So instead, the tree uses the same compartmentalization technique as it uses with leaves. It isolates the fungus to make sure it doesn’t spread throughout the entire tree trunk.

Below is a picture of the cross section of an alder (Alnus rubra) tree that was growing near the Tryon Creek Nature Center. It was cut down because it was a hazard to folks using the park. The picture clearly shows the solid reddish-brown wood, the gray-ish area of rotten wood probably caused by a fungus, and the thin black barrier the tree has developed to compartmentalize the infection.

5

Cross section of a red alder which has compartmentalized fungal rot

Park Ranger Dan Quigley found another very interesting rotten tree while cleaning up some “tree messes” around TCSNA. He cut me a “tree cookie” (a cross-sectional slice of the main trunk) and hauled it back to the shop. THANKS, DAN! This specimen of bigleaf maple (Acer macrophyllum) is interesting in that this tree appears to have been attacked by rot twice. It probably was wounded and infected once, and then sometime later, it was wounded and infected again. In older trees this is not uncommon. Again the black lines are the barriers created by the tree. (For size purposes, note that the tree cookie is overlapping both edges of the 29” wide picnic table it is resting on).

The wood at the very center of the tree, inside the first barrier, was so rotten that it has disappeared (probably in the cutting/handling process, if not prior to that). Most of the barrier was destroyed too. However, one small section of the first barrier is still present.

6

Slice of a hollow bigleaf maple trunk from TCSNA

This specimen provides a rare opportunity to view the “barrier” up close. I scraped away some of the rotten wood inside of the 1st attack barrier. The photo below shows a side view of the barrier, with the barrier being a darker color than the rest of the wood.

7


Side view of one section of the barrier strip in a partially rotten tree trunk

 

 

 

 

 

 

 

 

 

 

I carefully dug out some of the rotten wood between the first barrier strip and the bark. Then I took the photo below looking pretty much straight down the tree trunk. In this photo, you can see that the barrier strip is a real physical entity. It is approximately the thickness of, and as strong as, the material in a standard manila file folder.

8


Looking from the top down at the tree’s barrier to the 1st attack

 

Plants are tough!

Plants are rich storehouses of the energy that fungus and other disease-causing organisms need for their own success. Plants are under constant attack. While their defense mechanisms generally allow the whole plant to survive, it is often at the cost of sacrificing a part of themselves to the disease. Somehow, both the plants and the fungus have survived for millions of years, making our forest the home to some of the toughest organisms that you can imagine.

 

 


* Thanks to Jay W. Pscheidt, Extension Plant Pathology Specialist and Professor of Botany and Plant Pathology at Oregon State University for his input on this post. He both confirmed some things I thought I knew, and provided some new information on this topic! This exemplifies one of my favorite quotes, “None of us is as smart as all of us!” That said, I take full responsibility for any errors in this note! — Bruce Rottink


 

Drawn In

Art • Nature • Exploration

The NAI Blog

From the National Association for Interpretation

exploreportlandnature.wordpress.com/

Father/kids finding nature w/in the city

NAI Region 10

NAI R10 is a nonprofit professional organization serving NAI members in Alaska, Yukon, Alberta, British Columbia, Idaho, Washington and Oregon. Our mission is to inspire leadership and excellence to advance heritage interpretation as a profession.

Your Parks "Go Guide"

Oregon Parks and Recreation Department

Volunteer Voice

Oregon Parks and Recreation Department

Columbia River GORGEOUS

Ranger's blog for state parks in the Columbia River Gorge