Monthly Archives: October 2015

Fungus Among Us

Fungi in the Forest

By Bruce Rottink, Volunteer Nature Guide and Retired Research Forester

 

The fungi (singular = fungus) at Tryon Creek State Natural Area (TCSNA) are endlessly interesting. They’re more than just the cute mushrooms along the side of the trail. They take on many forms, and have more diverse lifestyles and habitat preferences than we might imagine.

 

What do fungi look like?

When you say “fungus” most people think of either mushrooms, or that fuzzy stuff on the tomato you left on the counter too long.  In truth, they can look like almost anything.

A hypha (plural = hyphae) is a single living “thread” of a fungus. Hyphae are the building blocks of every part of the fungus. Even mushrooms, the fruiting body of some fungi, are just a tightly packed bunch of hyphae. The fungus pictured below grew underneath the loose bark of a dead western redcedar (Thuja plicata) tree on the Big Fir Trail. The fuzzy white strands surrounding the solid central tan fungal mass are a good example of fungal hyphae.

 

1

Hyphae of this fungus are reaching out along the edges

 Some fungi do something really different. The honey fungus (Armillaria mellea), for example, sometimes uses a huge number of hyphae to create a structure called a “rhizomorph”. Rhizomorph roughly means “root-like thing.” These rhizomorphs are essentially hollow tubes made up of many, many hyphae. They are typically 3 or 4 mm wide (about 1/8 of an inch). Rhizomorphs are created by the fungus to move water and nutrients from one place to another. It has been suggested that when the fungus starts running out of nutrients in one place, it uses the rhizomorph to “explore” for another good location, and then transports some nutrients to that location to jump start the next fungal infection. The rhizomorphs of the honey fungus are black and about the same dimensions as a shoelace. In fact, foresters refer to this species as “the shoelace fungus.” The rhizomorph frequently grows between the bark and the woody tissue of the tree. The photo below shows a log lying alongside Old Main Trail. Several rhizomorphs are clustered side-by-side to form the big black splotch in the middle. This rhizomorph became visible when the bark fell off the log.

2

Old black rhizomorphs that grew under the bark of a tree

 

What else might fungi look like?

One form of fungus that is common to the bigleaf maple (Acer macrophyllum), is powdery mildew that grows on the surface of the leaf. Mostly it just looks like a light coating of white fuzz or dust, but it is a fungus. Sometimes you may see black dots which are the spore-producing bodies of this fungus.

3

Powdery mildew on a bigleaf maple leaf.

 

What do fungi like to eat?

You might think that since fungi are mostly just “rotting stuff” that they would eat anything. However, certain fungi have definite food preferences. Take for example wood decaying fungi. In medium or larger woody plants, there are two distinct kinds of wood. In the cross-section of a Douglas-fir (Pseudotsuga menziesii) below you can see two different colors of wood. The peach-colored wood in the middle is the heartwood, while the pale wood around the edge is the sapwood.

4

Cross section of Douglas-fir tree trunk

 

For fungi, the heartwood and the sapwood are two different types of food.

Heartwood:

The bad news: It is loaded with chemicals (generically called “extractives”) which inhibit the growth of fungi. It contains very little easily digestible nutrients like stored starch.

The good news: There are no living cells to “fight back” against a fungal invasion.

 

Sapwood:

The bad news: There are lots of living cells which sometimes fight back against the fungi.

The good news: There are lots of easily digestible stored foods like starch and sugars.

 

As you might suspect, some fungi have evolved to favor the heartwood, and some fungi have evolved to favor the sapwood. One manifestation of these preferences was found on the end of a log at TCSNA on the ground near the Nature Center. The fungal fruiting bodies indicated by the red arrows are from a species growing in the sapwood. The fungal fruiting bodies indicated by the white arrows are of a species growing in the heartwood. The third fungus, indicated by the yellow arrow, is also growing in the sapwood. I have seen other examples of this kind of distribution, but this was the most dramatic. Please note that the lower part of the log is hidden by the dead leaves on the ground.

5

Log showing different fungi growing in heartwood and sapwood areas.

 

What parts of the wood are the fungi eating?

Not only do different fungi attack different parts of the tree, they also eat different chemicals in the wood. Wood is made up of two main chemicals. The first is cellulose, and the second is lignin. Cellulose is a simple molecule made up of a long chain of glucose (a type of sugar) molecules, and only glucose molecules. Each glucose molecule is bonded to the next glucose in the same way. Lignin, in comparison, is a very complex molecule. It is made up of a variety of molecules, which are linked together into a network, not a nice straight chain. In addition, the bonds between the molecules which make up lignin are extremely variable.

Fungi use enzymes to break down large molecules. Digestive enzymes usually have one very specific bond that they break. The bottom line is that cellulose is easier to digest than lignin. The diagrams below convey the idea of lignin being complex compared to simplicity of cellulose. The colored shapes are the component molecules of cellulose and lignin, and the black lines (or chains, or spirals) represent the diversity of bonds between those molecules.

 

6

Cellulose

 

7

Lignin

 

 

 

 

 

 

 

 

 

 

In the real world, most wood appears to be light brown. Cellulose is pure white. Lignin is brown. So if a fungus eats all the lignin, the residue looks white. (Perversely, these fungi are called “white rot”, although the part of the wood they are eating is brown. Oh well!) My experience is that examples of white rot are less common than examples of brown rot. Pictured below is an example of white rot from a log near the Red Fox Trail.

8

Interior of this log was attacked by white rot fungi, leaving pure cellulose.

 

The fibrous cellulose left behind by the fungus is chemically identical to cotton fibers. Just think, your next tee shirt could be made out of a tree!

9

Close up of cellulose fibers remaining after attack by white rot fungi.

 

The brown rot fungi that only eat cellulose, leave behind the lignin. This is quite common. A stump with the cellulose eaten out of it is pictured below.

10

Stump which was attacked by brown rot fungi which digested all the cellulose.

 

After the wood is attacked by brown rot fungi, it tends to break into cubes. This leads to another name for this type of fungi, “brown cubical rot.” The lignin is not fibrous at all. This is seen in the picture below.

11

Wood residue after attack by brown cubical rot

 

White rot, brown rot, heart rot, powdery mildew and more, the fungi of TCSNA are a diverse and interesting bunch. They play many important roles in our forest’s ecosystem. While their small size frequently makes them hard to find, keep your eyes peeled! The rains of fall have already started to bring out their fruiting bodies in all their glory.

Discover more about our Fantastic Fungi here!

 

Come Be A Plein Air Painter!

Plein Air in the Park

Picture1

Where:     Tryon Creek State Natural Area, 11321 SW Terwilliger Blvd., Portland, OR 97219

When:       Sunday, October 11th from 1:00PM – 3:00PM

Come be a “Plein Air Painter”

Plein Air painting is the act of painting outdoors, come find inspiration in the forest of Tryon Creek State Natural Area. Join a community of artist and nature lovers as we fill the forest with creativity and share our passion for the natural world.

Artists are invited to participate. Please bring your own supplies and set up on our all accessible Trillium Trail. Feel free to set up as early as 11:30AM, the Trillium Trail will be reserved for the event from 11:30AM – 4:00PM.

Feeling inspired, but don’t have any experience painting? No worries, we’ve got you covered! No art experience required!

Instructors will be on site from Bottle and Bottega from 1:00PM – 3:00PM. Print

All supplies will be provided, just stop by, pick up a brush, and add your mark to our Mix and Mingle Mural.

Looking to share your work after the event? Submit your artwork for display in the Nature Center.

Questions? Please send comments to: Jennifer.Primm@oregon.gov

 

This program is being funded in part by a matching grant from OPRD Heritage Programs and the Oregon Cultural Trust.

logo

Buds: A Bridge to the Future

Buds: A Bridge to the Future

By Bruce Rottink, Volunteer Nature Guide and Retired Research Forester

 

Winter is a tough time for the woody plants at Tryon Creek State Natural Area (TCSNA). The air gets both colder and, when the temperature dips below freezing, much drier. Most of the plants stop growing, and some shed their leaves. However, the plants have to be prepared for the next growing season. To prepare, they form buds as a “bridge” to the future. By September the buds are a conspicuous feature of woody plants at TCSNA .

A woody plant’s bud might merely look like a hard little blob on a branch, like this bud of a European hazel (Corylus avellana) growing near TCSNA’s main parking lot.

1

Dormant bud of European hazel

But the buds of TCSNA’s woody plants are actually quite interesting.

So what exactly is a “bud”?

At the tip of each branch is a small cluster of active cells called the apical meristem. At some point in the spring-summer-fall (it varies with different species), the apical meristem starts differentiating and forming a bud consisting of a variety of structures. These structures can be bud scales, leaves or flowers. These tiny structures rest over the winter, and come spring, they start growing. Even the tough-looking bud scales elongate a bit in the spring.

Below is a picture of a bigleaf maple (Acer macrophyllum) bud which is just starting to open. The different parts of the bud are labeled. The “scale to leaf” transition components have very, very tiny leaf parts at the tip of the scale, you’ll have to look closely.

2

Newly opened bigleaf maple bud

 

Last spring I picked another newly opened bud of bigleaf maple which was slightly more advanced than the one pictured above. I took it apart to more clearly show the different components. In the picture below, the parts from the base of the bud are at the left hand side, and the other structures are arrayed in order, right up to the flower, which was at the tip. For completeness, at the base of the floral stem are two tiny meristems (not visible here) that will create next year’s buds.

2_a

Components of a newly opened bigleaf maple bud

 

Since the maples produce structures in pairs, one on each side of the stem, there are always an even number of scales and leaves. The flower is an exception to this rule. The “scale to leaf” transition phase is the most interesting. The leaves and flowers have a perfectly round “stem” connecting them to the branch of the plant. The “scale to leaf transition” structures are dwarf leaves supported by a flattened “stem” that resembles the bud scales in shape. These structures clearly demonstrate the plant’s flexibility when it comes to producing different parts. It’s not a clear “one thing or another” decision. (Note: Not all maple buds have these part-scale/part-leaf structures.)

Now it starts to get really interesting!

Okay that’s the basic pattern, but with dozens of different species of woody plants growing at TCSNA, we’ve got lots of variations in buds.

The first type of “weird bud” is the naked bud. This means a bud that has no bud scales. Our native cascara buckthorn (Frangula purshiana) produces naked buds as seen below. The leaves are fully exposed to the winter environment, but are very tough, and slightly hairy. If you want to see a cascara, go to Beaver Bridge. The cascara is about 5 feet upstream from the bridge on the side of the creek furthest from the Nature Center.

3

Naked cascara bud just starting to open in early spring

 

Flower Buds, Leaf Buds and Both of them!

As you saw with the bigleaf maple, some buds contain both leaves and flowers, but some contain only leaves and some contain only flowers.

Oftentimes you can tell if the bud contains flowers even before the buds open. In the picture below are two buds of Indian plum (Oemleria cerasiformis) collected from the same branch. They are just starting to expand in the spring. The big fat bud with the rounded end contains both leaves and flowers, while the skinny one contains only leaves.

4

Indian plum buds: the top one contains leaves and flowers, the lower one, only leaves

Indian plum also teaches us that the term “bud break” is ambiguous at best. Below is a picture of a newly opened Indian plum “bud” containing both leaves and flowers. The young leaves including their tiny veins are clearly visible. The flowers are still contained with their own separate “buds.” So, with the Indian plum we have a bud within a bud.

5

Mixed bud of Indian plum with both leaves and flower buds

The Indian plum plants are either male or female, and with rare exceptions, will have only functional male OR female flowers on a single plant.

Keeping it all together

In contrast, some plants have both male buds and female buds on the same plant. Red alder (Alnus rubra) is a good example. The alder tree has buds that only contain leaves, other buds that only contain female flowers, and other buds that only contain male flowers. The photo below shows the three different kinds of overwintering alder buds.

 

6

Three different types of buds on a red alder

 

How else can the buds be different?

One of the most important ways that buds are different is that some species have determinate, buds and other species have indeterminate buds. Overwintering determinate buds contain all the organs (like leaves, needles, flowers, whatever) that will appear the following year. Indeterminate buds hold only a few of the organs that may appear next year.

A good example of a determinate bud is our Douglas-fir (Pseudotsuga menziesii). In the winter, all of the needles that will grow out of the Douglas-fir bud the next year are already present in primitive, miniature form call “primordia.” Pictured below is a Douglas-fir bud which I collected in late August and stripped off all its scales. Each little needle primordium will turn into an actual needle early next spring. Two of the primordia are indicated with black arrows. All of the needles destined for the 2016 branch are represented by a little bump of tissue. This entire green structure is approximately 2 mm (1/12”) in diameter. For plants with determinate buds, it is easy to see why the environment of one year is so important in influencing the growth of the plant in the following year.

7

Douglas-fir bud stripped of scales

In contrast, TCSNA’s black cottonwood (Populus balsamifera var. trichocarpa) has an indeterminate bud. For cottonwood this typically means that there are three or four relatively big pre-formed leaves that overwinter in the bud. Come spring, these leaves will expand very quickly, and start producing sugar for the plant. If the weather conditions are good, the apical meristem will create another leaf from scratch, and when that is done, the tree might produce a couple of more leaves, etc. This is why for indeterminate plants, shoot growth in any one year is profoundly affected by the environment in the current year, not the previous year!

Below is a whole cottonwood bud, and the same bud with the scales removed. In the second photo you can easily see two preformed leaves, two more are hidden on the backside of the bud.

8

Whole cottonwood bud

9

Cottonwood leaves already formed inside the bud

 

 

 

 

 

 

 

 

 

 

 

 

The photo below shows a single, preformed cottonwood leaf in the bud. The light streak is the main vein which will go down the center of the mature leaf.

10

Single rolled leaf from cottonwood bud

 

The photo below is of a black cottonwood shoot not too long after it emerged from the bud. You can see the 3 large leaves which were preformed, and the fourth, smaller, leaf which formed after the bud broke.

11

Black cottonwood shoot with 3 large pre-formed leaves, and one newly formed leaf

 

For the woody plants at TCSNA, the overwintering buds ARE the future. It is amazing that the fate of something as large as a tree rests within the tiny buds which bridge the gap between the growing seasons. All things considered, buds deserve a lot more attention than they receive.

 

 

 

 

 

Drawn In

Art • Nature • Exploration

The NAI Blog

From the National Association for Interpretation

exploreportlandnature.wordpress.com/

Father/kids finding nature w/in the city

NAI Region 10

NAI R10 is a nonprofit professional organization serving NAI members in Alaska, British Columbia, Northern Idaho, Oregon, Washington and Yukon. Our mission is to inspire leadership and excellence to advance heritage interpretation as a profession.

Your Parks "Go Guide"

Oregon Parks and Recreation Department

Volunteer Voice

Oregon Parks and Recreation Department

Columbia River GORGEOUS

Ranger's blog for state parks in the Columbia River Gorge